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The Ability to Detect Signals

Process behavior charts and skewed data

Donald J. Wheeler

Last month I looked at how the fixed-width limits of a process behavior chart filter out
virtually all of the routine variation regardless of the shape of the histogram.  In this column I will
look at how effectively these fixed-width limits detect signals of economic importance when
skewed probability models are used to compute the power function.

POWER  FUNCTIONS

A power function provides a mathematical model for the ability of a statistical procedure to
detect signals.  Here we shall use power functions to define the theoretical probabilities that an X-
chart will detect different sized shifts in the process average.  To compute a power function we
begin with a probability model to use, and a shift in location for that model.  Figure 1 shows these
elements for a traditional standard normal probability model.

shift

N( 0, 1 ) N( 1, 1 )
µ µ + 3σµ − 3σ

a = 0.0228

0 1 2 3 4–1–2–3

Figure 1: Normal Model with a 1.0 Sigma Shift in Location

The probability that a point will fall above the upper three-sigma limit when the process
mean has shifted from 0.0 to 1.0 is a = 0.0228.  This is the probability of detecting this shift on the
first observation following the shift (k = 1).  The probability of detecting the shift when k = 2 is:

[ a ( 1 – a ) ]  =  0.0223.

And the sum of these two values is the probability of detecting this shift within two observations.
This sum of 0.0451 is the “power for detecting a one sigma shift” at k = 2.  Continuing in this
manner, the probability that a point will fall outside a three-sigma limit within k observations is:

Power for a Given Shift   =    Σ
i=1

k
   a  ( 1 – a ) i–1    =     1 – ( 1 – a )k

Thus, our initial probability of a point falling outside the three-sigma limit, a, depends upon a
probability model and the size of the shift.  When combined with k = the number of observations
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following the shift the power function can be evaluated using the simple formula above.  When
we compute these probabilities for different shifts and different values for k we can draw the
power function curves for the X-chart shown in Figure 2.
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Figure 2: The Traditional Power Function Curves for X-Chart

To interpret Figure 1 consider the red dots shown which correspond to a 3σ shift in location.
There is a 50% chance of detecting this shift on the very first observation following the shift.
There is a 75% chance of detecting this shift within two observations, and there is an 87.5%
chance of detecting this shift within three observations following the shift.  Thus, by covering
different sized shifts and different numbers of observations, the curves in Figure 2 contain a
wealth of information.  To summarize this information in a coherent and understandable way we
shall use average run lengths.

AVERAGE  RUN  LENGTHS

Returning to the red dots in Figure 2 where k = 1, 2, 3, 4, 5, etc.  We could compute the
average value for k needed to detect a 3σ shift in location.  This average is known as the average

run length (ARL) and may be computed by multiplying each value of k by the probability of
detecting the shift on the k-th observation, and then adding up the products.  For the red dots this
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operation gives:

Average Run Length(3σ)  =  1*(0.50) + 2*(0.25) + 3*(0.125) + 4*(0.0625) + …

= Σ
k=1

∞
  k  a  ( 1 – a ) k–1    =   

1
a   =  2.000

So an X-chart is traditionally said to have an ARL of 2.0 for detecting a 3σ shift.  This means
that, on the average, the chart will detect a signal of this size within 2 observations.  Thus, an ARL

value summarizes the ability to detect a specific shift.
Since the probability a can never exceed 1.00, the ARL values can never be less than 1.00.  By

using the ARL values for different sized shifts we can summarize a set of power function curves
quite compactly.

Shift 2.0 σ 2.2 σ 2.4 σ 2.6 σ 2.8 σ 3.0 σ 3.2 σ 3.4 σ 3.6 σ 3.8 σ 4.0 σ
ARL 6.3 4.7 3.6 2.9 2.4 2.0 1.7 1.5 1.4 1.3 1.2

Figure 3:  Traditional Average Run Lengths for X Chart

As expected, as the shifts get bigger the ARL values get smaller, and the larger shifts are
detected more quickly.  In what follows I shall use the ARL values to evaluate the ability of an X-

chart to detect signals while using skewed probability models.

THE  SIX  PROBABILITY  MODELS

The curves shown in Figure 2 are the traditional power functions based on the normal
probability model.  But what happens to the ability of the X-chart to detect signals when using a
skewed probability model?  To answer this question I computed the power function curves for
the X-chart using the five skewed probability models shown in Figure 4.

The chi-square distribution with 8 degrees of freedom has a mean value that is 2.0 standard
deviations above zero.

The Weibull distribution with shape parameter = 1.6 has a mean value that is 1.56 standard
deviations above zero.

The chi-square distribution with 4 degrees of freedom has a mean value that is 1.414 standard
deviations above zero.

The exponential distribution has a mean value that is 1.00 standard deviation above zero.
The lognormal distribution with shape parameter = 1.00 has a mean value that is 0.76

standard deviations above zero.
I computed the power functions for each of these six probability models using five different

combinations of the Western Electric zone tests.  However, it turns out that using the various run-
tests in addition to detection rule one will add very little to the power functions for the skewed
probability models.  So, in the interest of simplicity, I shall only consider the power functions for
detection rule one (a single point beyond a three-sigma limit) in the evaluations that follow.
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Figure 4: Six Probability Models

As always, when a boundary condition falls inside one of the three-sigma limits it will take
precedence over that limit, and the process behavior chart will become a one-sided chart as
shown. It is instructive to note that, in every case, the upper three-sigma limits continue to cover
the bulk of the elongated tails in spite of the increasing skewness.
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Figure 5:  The Six Models with One-Sigma Shifts

Figure 5 shows the original distributions and the distributions used to represent a one-sigma
shift in location.   With the skewed probability models any change in location will generally be
accompanied by a change in dispersion.  To maintain the same amount of skewness in spite of the
change in both location and dispersion I had to use gamma distributions to represent the shifted
chi-square and exponential distributions.  Since gamma distributions possess both a scale
parameter and a shape parameter their use allowed the average to shift while maintaining the
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skewness of the original distributions.   Inverting the values for the probabilities of exceeding the
upper three-sigma limit for each of the six models (labeled a in Figure 5) results in the ARL values
in the first row of Figure 7.

THE  RESULTS

Process behavior charts are intended to detect those process changes that are large enough to
be of economic interest.  In most cases these will be shifts in location in the neighborhood of three
sigma or greater.  Figures 6 and 7 show the ARL curves for the six different probability models for
shifts greater than 2σ.  While all of these curves drop as we move to the right, the ARL values
increase as the skewness of the model increases.  Thus these different ARL curves quantify the
differences in sensitivity that occur as the probability model becomes more skewed.
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Figure 6:  ARL Curves for Detection Rule One

In the region where the normal model has the smallest ARL value we find the following from
Figure 7:  For a 2.8σ shift in location the ARL value moves up from 2.4 to 2.5, 2.5, 2.6, 2.9, and 3.5
as the probability model changes.  For a 3σ shift in location the ARL value moves up from 2.0 to
2.3, 2.3, 2.5, 2.7, and 3.2.  So we can expect that shifts in the neighborhood of 3σ to be detected
within 2 to 3 observations on the average regardless of which of these six probability models we
use to define the power function.

For a 4σ shift in location the ARL value moves up from 1.2 to 1.7, 1.8, 1.9, 2.2, and 2.5.  For a
5σ shift in location the ARL value moves up from 1.0 to 1.5, 1.6, 1.7, 1.9, and 2.1.  And for a 6σ
shift in location the ARL value moves up from 1.0 to 1.3, 1.4, 1.5, 1.8, and 1.9.  So we can expect
shifts of 4σ to 6σ to be detected within 1 to 2 observations on the average regardless of which of
these six probability models we use to define the power function.
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Average Run Lengths for an X Chart Using Six Probability Models

Shift Normal Chi-Sq 8 Weibull Chi-Sq 4 Exp Lognormal
1.0 σ 44 9.9 8.3 8.3 7.4 9.6
2.0 σ 6.3 3.8 3.5 3.7 3.8 4.7
2.2 σ 4.7 3.3 3.1 3.3 3.5 4.3
2.4 σ 3.6 3.0 2.9 3.1 3.2 4.0
2.6 σ 2.9 2.7 2.6 2.8 3.0 3.7
2.8 σ 2.4 2.5 2.5 2.6 2.9 3.5
3.0 σ 2.0 2.3 2.3 2.5 2.7 3.2
3.2 σ 1.7 2.2 2.2 2.3 2.6 3.1
3.4 σ 1.5 2.0 2.1 2.2 2.5 2.9
3.6 σ 1.4 1.9 2.0 2.1 2.4 2.8
3.8 σ 1.3 1.8 1.9 2.0 2.3 2.6
4.0 σ 1.2 1.7 1.8 1.9 2.2 2.5
4.2 σ 1.1 1.7 1.8 1.9 2.2 2.4
4.4 σ 1.1 1.6 1.7 1.8 2.1 2.3
4.6 σ 1.1 1.6 1.7 1.8 2.0 2.3
4.8 σ 1.0 1.5 1.6 1.7 2.0 2.2
5.0 σ 1.0 1.5 1.6 1.7 1.9 2.1
5.2 σ 1.0 1.4 1.6 1.6 1.9 2.0
5.4 σ 1.0 1.4 1.5 1.6 1.9 2.0
5.6 σ 1.0 1.4 1.5 1.6 1.8 2.0
5.8 σ 1.0 1.3 1.5 1.5 1.8 1.9
6.0 σ 1.0 1.3 1.4 1.5 1.8 1.9

Figure 7:  Average Run Lengths for X Chart Under Six Probability Models

Thus, these ARL values tell us that with the generic, three-sigma limits, depending upon
which probability model you think is appropriate, you might have to wait, on the average, for one

extra observation to detect these signals!

Unfortunately, in practice, we will never have enough data to actually choose between these
various probability models.  This means that we will never be able to identify which ARL curve
above approximates our analysis.  But because these ARL values are all so similar, we can
definitely say that by the time we are looking at signals greater than 2.75σ, all of the probability
models have a theoretical average run length below 3.5.  This means that in practice an X-chart will

usually detect shifts in excess of 2.75σ within an average of three observations or less.  Moreover, shifts in

excess of 4σ will usually be detected within an average of one or two observations.

So different probability models do result in different power functions.  We have rigorously
quantified these differences across a wide range of skewed probability models and have found
that, for shifts in location that are large enough to be of interest, the theoretical differences are all
too small to be of any practical consequence.

SKEWED  HISTOGRAMS

Of course, the most common cause of a skewed histogram is not a skewed process, but rather
a process that is operated unpredictably.  As the process location goes on walkabout the
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outcomes vary and the group picture turns out to be lopsided.  Consider the histogram in Figure
8.  It could hardly be said to be anything other than skewed.

8 10 12 14 16 18 20 22 24

Figure 8:  Histogram for 200 Process Values

When we place these 200 values on an X chart in time-order sequence with limits based on
the average moving range of 2.38 we get Figure 9.   With twelve points outside the limits we have
plenty of signals.  This process was changing during the time covered by these data and any
attempt to discuss the “skewness” of the histogram above, or to fit a probability model to these
data, is patent nonsense.
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Figure 9:  X Chart for Figure 8 Data

We cannot use a probability model to describe a process that is changing.  But how can you
know if the process is changing?  That is the purpose of a process behavior chart. So trying to fit a
probability model to your data before you place them on a process behavior chart does not make
sense.  Never has, never will.

PREDICTABLE  PROCESSES

On the other hand, when a process is operated predictably and the process average is close to
some barrier or boundary condition we will end up with a skewed histogram.  As the distance
between the process average and the boundary condition drops below two standard deviations
the skewness will become more pronounced and the histogram will display one short tail and
one long tail.  So do we need to fit a model to these data so that we can fine-tune the limits to
make the process behavior chart more sensitive?  No, we do not.  Why we do not will be
explained in next month’s column.
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SUMMARY

Probability theory only provides a guide for practice.  To compute power functions we have
to assume that:

(1) the measurements do not display any discreteness;
(2) the measurements are independently and identically distributed;
(3) we know the probability model for the measurements;
(4) the limits are known without error; and
(5) any changes in process location can be represented by a step function.

While these assumptions make the computations possible, they all, to a greater of lesser
degree, are unrealistic in practice.  This is why power functions are said to be theoretical.  They
only approximate what happens when we analyze data.  When theoretical values turn out to be
similar, the theoretical differences are unlikely to be realized in practice.

After a careful and rigorous theoretical analysis that is sufficiently general to cover most
situations we have found that skewness might slow the detection of shifts in location that are 3σ
and larger by an average of one additional observation when using generic, three-sigma limits.
Since ARL differences of this size will be undetectable in practice, we must conclude that
skewness is not a problem for a process behavior chart.

So do not worry about the shape of your histogram.
Do not try to fit a probability model to your data.
And do not even think about using transformations to achieve “normality.”
Simply collect the data, place them on a process behavior chart, and determine if your

process is being operated predictably or unpredictably.  Look for assignable causes of
unpredictable operation and remove their effects from your process.  Repeat.  In doing this you
can make a process behavior chart into the locomotive of continual improvement.  Everything
else is just unnecessary busywork.
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