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A Problem with Outlier Tests

When can you really use Dixon’s test?

Donald J. Wheeler

Outlier tests such as the W-ratio test and Dixon’s outlier test suffer from a problem that can
mislead the user.  This paper will outline the problem and provide guidelines for the appropriate
use of these tests.

DIXON’S  OUTLIER  TEST

In 1953 W. J. Dixon proposed a test for detecting outliers that is similar to the W-ratio test
given in my columns for June and November of 2012.  Since these tests are concerned with the
analysis of a fixed and finite data set, we dispense with the time order sequence and arrange the k
values in numerical order.  Let X1 denote the smallest value and let Xk denote the largest value,
so that the following relationships are satisfied.

X1   ≤   X2   ≤  …   ≤   Xk

For Dixon’s Outlier Test we are concerned with only the first or the last of the differences in
this ordered set.

w1  = X2 – X1       or       wk-1  = Xk – Xk-1

Dixon’s Q statistic is the larger of the two differences above divided by the range of the k
values (Xk – X1):

Q  = the larger of    
w1  

  Xk – X1     and   
wk–1  

  Xk – X1  

When the Q statistic exceeds the appropriate critical value then the corresponding extreme
value, either X1 or Xk, is said to be an outlier.  The critical values for the Q statistic depend upon
both the number of values in the original data set, k, and the alpha-level for the test.  Dixon gave
critical values for alpha values ranging from 0.01 to 0.60.  Figure 1 contains the critical values for
Dixon’s test for alpha levels of 0.01, 0.05, 0.10, and 0.20.

alpha k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 k = 11 k = 12
1% 0.994 0.926 0.821 0.740 0.680 0.634 0.598 0.568 0.542 0.522
5% 0.970 0.829 0.710 0.675 0.568 0.526 0.493 0.466 0.444 0.426

10% 0.941 0.765 0.642 0.560 0.507 0.468 0.437 0.412 0.392 0.376
20% 0.886 0.679 0.557 0.482 0.434 0.399 0.370 0.349 0.332 0.318

Figure 1:  Critical Values for Dixon’s Outlier Test

Dixon illustrated this test using the five values { 23.4, 24.1, 25.5, 23.5, 23.2}.  Arranging these
values in numerical order we have:

X1 = 23.2 X2  = 23.4 X3  = 23.5 X4  = 24.1 X5  = 25.5
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so that the first and last differences are:

w1  = X2 – X1   =  0.2     and       wk-1  = Xk – Xk-1   = 1.4

and the Q statistic is:

Q  =   
wk–1  

  Xk – X1      =  
 1.4 
 2.3   =  0.609

Thus, with a 20 percent risk of being wrong, we can label the value of 25.5 to be an outlier in this
data set.  Dixon’s test is simple, easy to understand, and has been widely used in the sixty years
since it was introduced.  But there is a problem lurking in the computations that is not widely
understood.

THE  PROBLEM

The critical values given in Figure 1 were all obtained under the assumption that the values
in the data set are all points from a continuum.   That is, the computations assume that each value
is known to a large number of decimal places.  In practice this is seldom the case.  More often
than not the data are rounded off to some small number of digits.  In the example above the data
were recorded to a tenth of a unit.  Thus, while the whole numbers represented measurement
units, the measurement increment used was a tenth of a measurement unit.

The fact that all data are recorded to some specific measurement increment can become a
problem for outlier tests such as the W-ratio test and Dixon’s Q statistic.  To understand this
consider a simple data set consisting of three values that are extremely homogeneous:

X1 = 323.24 lbs X2  = 323.25 lbs X3  = 323.25 lbs

The measurement unit here is a pound.  The measurement increment is a hundredth of a pound.
The Q statistic is:

Q  =   
w1  

  Xk – X1     =   
 0.01 
 0.01     =  1.000

So, with k = 3 and an alpha level of 0.01, Dixon’s test tells us that the value of 323.24 is an outlier!
Of course this result makes no sense for these three data.

The problem with using the W-ratio test or Dixon’s Q statistic is that the possible values for
the test statistic will depend upon how many measurement increments are contained in the range
of the data.  In the example above the smallest and largest values differed by only one
measurement increment.  As a result, the Q statistic could only take on a value of 0.000 or 1.000.
No other values are possible in this case.

In order for both Dixon’s Outlier Test and the W-ratio test to work as intended the possible

values for the test statistics have to form a reasonable continuum between zero and one.  When
the range of the data only represents a handful of measurement increments, this condition will
not be satisfied, and the alpha-level for the test can be radically different from the nominal alpha
level given in the table.  For example, if the range of the data set is equal to five measurement
increments, then the ratios can only take on the values of  0.0, 0.2, 0.4, 0.6, 0.8, and 1.0, regardless
of the value for k.

In Dixon’s example given in the previous section the range was 2.3 units and the
measurement increment was one-tenth of a measurement unit, so the range corresponds to 23
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measurement increments and the Q statistic corresponds to some integer multiple of 1/23 =
0.04348.   In this case it was 14 times 1/23 = 0.609.  The next possible value for the Q statistic is
0.652.  Nothing in between 0.609 and 0.652 is possible.

Thus, while the critical values for the W-ratio test and Dixon’s Outlier Test assume a
continuum of values for the test ratios, in practice we often find the test ratios to be chunky rather
than continuous.  As a result, the alpha-level of our test might be radically different than we think
it is, and our analysis may be incorrect.    So, when can we use these tests for outliers?  This will
be addressed in the following section.

ROBUST  TESTS  FOR  OUTLIERS

When we work out the mathematical theory behind a statistical procedure we are usually
working with continuous random variables that are independently and identically normally
distributed.  When we use these same statistical procedures in practice we are working with data
which are recorded to a finite number of digits; which are generated by a process that is subject to
upsets and changes over time; and which never have a normal histogram.  As a result, all
statistical procedures are approximate.  If they work in practice approximately like we expect
them to work based on theory then they are satisfactory.  The general term for this satisfactory
performance is robustness.  Before a statistical test will be of much use it will need to be robust.

We typically characterize robustness by comparing the observed false alarm rate with the
theoretical false alarm rate.  The alpha-levels given in Figure 1 are the these theoretical false alarm
rates.  As demonstrated above, the measurement increment can affect the chunkiness of the test
ratios, and this in turn can affect the observed alpha-level for the procedure.

For example, when the range of the data is equal to 10 measurement increments, and there
are only k = 3 values in the data, regardless of whether you use the 0.01 critical value, the 0.05
critical value, or the 0.10 critical value, your average observed alpha-level is going to be 0.085!
Clearly, this is a case where the test does not perform as expected based on the mathematical
theory.  Here Dixon’s test and the W-ratio test are non-robust.

Thus, the question becomes how many measurement increments do we need in the range of
the data in order for Dixon’s Outlier Test  and the W-ratio test to be robust.  The first step in
answering this question is to come up with a criterion for robustness.  My criterion is as follows:
When performing a test using a 0.01 critical value I expect the observed alpha level to be between
0.0075 and 0.0125; when performing a test using a 0.05 critical value I expect the observed alpha
level to be between 0.040 and 0.060; when performing a test using a 0.10 critical value I expect the
observed alpha level to be between 0.085 and 0.115; and when performing a test using a 0.20
critical value I expect the observed alpha level to be between 0.17 and 0.23.  (The greater latitude
given to the 0.01 and 0.05 levels is intentional.)  With this criterion your observed alpha-level will
be reasonably close to the theoretical alpha-level that corresponds to the critical value used.

Now, when I use a test for outliers with a single homogeneous data set, it either will, or will
not, have a false alarm for that data set.  So, to deterrmine the observed alpha level for a test I will
need to repeatedly apply the test to successive homogeneous data sets.  If I use Dixon’s test at the
0.01 level with 10,000 homogenous data sets, then according to the criterion given above, I would
say the test is operating robustly at the 0.01 level if I find between 75 and 125 false alarms out of
the 10,000 tests.
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THE  SIMULATION  STUDY

Since the question is how does the number of measurement increments in the range of the
data affect the robustness of Dixon’s Q statistic, we need to look at the observed alpha-levels as a
function of the number of measurement increments.  To compute observed alpha-levels I started
with several million independent observations from a standard normal distribution.  Then I
arranged these into data sets of size k (for k = 3 to 10) and computed the Q statistic for each data
set.  Next I grouped 10,000 sets of size k together and computed an observed alpha-level for each
of the critical values for that value of k.  By repeating this operation up to 25 times for each value
of k  I obtained multiple observed alpha-levels and an average observed alpha-level for each
critical value for each value of k.  This operation would then be repeated for different numbers of
measurement increments in the range of each of the data sets.

For example, when k = 3 and the range of each data set is equal to six measurement
increments, regardless of which critical value is used, the average observed alpha-level turns out
to be 0.145.  Even though you may think you are testing at the 1 percent, 5 percent, 10 percent or
20 percent level, you are actually incurring a 14.5 percent risk of a false alarm!  Clearly not what
the theory predicts.

As the number of measurement increments in the range of each data set gets larger the effects
of the chunky ratios diminishes and eventually the average observed alpha-levels will move
closer to the theoretical values.  Eventually the individual observed alpha-levels will also
converge on the theoretical values.  When all of the individual observed alpha-levels for a given
critical value meet the criterion for robustness given above, we can say that the test is performing
robustly and may be used in practice.

To remove the effects of the simulation study itself from the results I started each study by
making the range of each set of k data equal to 1000 measurement increments and adjusting the
observed alpha-levels to be equal to the theoretical value.  Then, as I made the ranges equal to
lesser numbers of measurement increments I could observe the impact these changes had upon
the observed alpha-levels.  As the number of measurement increments got smaller the variation
in the observed alpha-levels would increase, and eventually the average alpha-levels would start
to skew away from the theoretical values.  In this way it was possible to discover the minimum
number of measurement increments needed in the range of the data set before Dixon’s Outlier
Test can be said to be robust and therefore useful in practice.

The results of these simulation studies are shown in Figure 2.  There we find the minimum

number of measurement increments to be found in the range of the data before we can use
Dixon’s Outlier Test with some hope that our false alarm rate will be approximately the same as
the theoretical alpha-level that corresponds to a given critical value.

Theoretical Observed
alpha-level alpha-level k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

0.01 0.75% to 1.25% 500 56 46 40 48 45 46 45
0.05 4.0% to 6.0% 77 30 32 33 31 39 29 33
0.10 8.5% to 11.5% 56 31 32 33 23 35 33 35
0.20 17% to 23% 30 26 26 30 24 31 28 27

Figure 2:  Minimum Number of Measurement Increments in Range for Robustness
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If the range of your data set contains fewer measurement increments than the value in the
table, you cannot reliably use Dixon’s Outlier Test (or the W-ratio test) at that alpha-level.  If you
do use it, your risk of a false alarm may be considerably different than you think it is.  The greater
your shortfall in the number of measurement increments, the greater the chance that your alpha-
level will not be what you think it is.

Notice that Dixon’s example given earlier had only 23 measurement increments in the range,
yet from Figure 2, with k = 5 we need at least 26 measurement increments to test for outliers at the
20 percent level.  So, when Dixon called the value of 25.5 an outlier he was stretching a point.  His
alpha-level may have been greater than 23%, or less than 17% due to the chunkiness of his Q
statistic.

Except for the first row and the first column of Figure 2, most of the values in Figure 2 are in
the neighborhood of 30.  Thus we might generalize to obtain the following guidelines from these
simulation study results.  If k is 4 or greater and the range of the data consists of at least 30
measurement increments, you may use Dixon’s test at the 0.05, 0.10, or 0.20 level.  If k is 5 or
greater and the range of the data consists of at least 45 measurement increments, you may use
Dixon’s test at the 0.01 level.  In these cases it will be reasonably robust.

To use Dixon’s Test for k = 3 you must have a very large number of measurement increments
between the minimum and maximum of your three values.  Since the expected size of a range
drops as the number of values drop, the minimums shown in Figure 2 impose a serious barrier to
the use of Dixon’s test (or the W-ratio test) with k = 3.  (The value of 500 for k = 3 effectively
precludes the use of Dixon’s test or the W-ratio test in a conservative mode when k = 3.)

WHAT  HAPPENS  WHEN  YOU  FIND  AN  OUTLIER ?

For many years the Imperial Standard Yard (ISY) was the primary standard for length in the
U.K.  In 1852 they made a secondary standard known as Parlimentary Copy Five (PC5).  Of
course they compared these two standards periodically.   The measurement increment used in
these comparisons was a millionth of an inch.  The values recorded for [ PC5 – ISY ] in 1852, 1876,
1892, 1912, 1922, and 1932 were, respectively:

{ –55, –33, +70, –43, –23, and –47 millionths of an inch}

Here k = 6, the range of the data is 125 measurement increments, and the Q statistic is 0.744.
Since the data satisfy the requirements for the number of measurement increments in Figure

2, and since this Q statistic exceeds the critical values shown for k = 6 in Figure 1, we can call the
1892 measurement of +70 an outlier at the 0.01 level.  It is clearly diffewrent from the other
values.  Since the standards are presumably not changing, this outlier is most likely due to an
error in measurement.  (Measuring things to a millionth of an inch is tricky even today.  I once
watched the readout on a measurement device change by five millionths of an inch whenever I
said a word beginning with “p” or “b”.)  So, having identified the 1892 reading as an outlier,
what can we do?  Here we can only delete the 1892 value before computing any summaries.
Using the remaining data, PC5 appears to be about 40 millionths of an inch shorter than ISY.

Deleting the outliers may make sense when working with archival data, but in practice, when
working with data that supposedly represents your current process and the product that you are
actually shipping, this deletion of outliers may be completely misleading.  For this reason you
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should be careful when testing for outliers.
All outliers are signals that something unplanned has happened.  When something unplanned

happens, you will need to know what has happened.  And when you know what has happened
you will often need to do something about it.  Since unplanned changes in product or process can
require action, you would be well advised to use a conservative (0.01) alpha level when testing
for outliers.  So, be careful when using a test for outliers—you may regret what you find.

This all means that, in practice, an outlier is usually something much more serious than a blip
in the data.  It requires something more than simply “cleaning up the data.”  If you delete the
outlier and go on to compute summary statistics; ship the batches; and approve the process; you
will be ignoring the fact that you know things are changing; that the batches are different; and
that you have multiple processes masquerading as a single process.

If you choose to do nothing about unplanned changes, if you choose to ignore the outlier as
bad data and continue with your computations, then you are simply “whistling as you walk past
the graveyard.”  However, in this case, you actually have evidence that there is a zombie in there
waiting to eat your brain.


