What is Chunky Data?

What happens when the measurement increment gets too large?
Donald J. Wheeler

Many times measurements are made using measurement increments which are too large for
the job. Fortunately this problem is easily detected by ordinary, production-line process behavior
charts. No special studies are necessary; no standard parts or batches are needed. You simply
need to recognize the tell-tale signs. It is the purpose of this column to explain these signs of
chunky data, to outline the nature of the problem that causes chunky data, and to suggest what
can be done about it when it occurs.

Most problems with process behavior charts are fail-safe. That is, the charts will err in the
direction of hiding a signal rather than causing a false alarm. Because of this feature, when you
get a signal, you can trust the chart to be guiding you in the right direction. Chunky data is the
only exception to this fail-safe feature of the process behavior chart.

Data are said to be chunky when the distance between the possible values becomes too large.
For example, what would happen if measurements of the heights of different individuals were
made to the nearest yard? Clearly, the variation from person to person would be lost in the
round-off, and any attempt to characterize the variation in heights would be flawed. When the
round-off of the measurements begins to obliterate the variation within the data you will have
chunky data. The effect that chunky data has upon process behavior charts is illustrated by the
following example.

The data in Figure 1 are the measurements of a physical dimension on a plastic knob. These
data are recorded to the nearest one-thousandth of an inch (0.001 in.). Subgroups 1 to 14 are in
the first column, while subgroups 15 to 27 are in the second column. There are no signals of
exceptional variation on either the average chart or the range chart. These data show no evidence
of a lack of homogeneity, and therefore we would conclude that the process producing these
rheostat knobs is being operated predictably.
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The Rheostat Knob Data

Measurements X R Measurements X R
1 .140 .143 .137 .134 .135 .1378 .009 15 144 142 143 .135 .144 .1416 .009
2 138 .143 .143 .145 .146 .1430 .008 16 .133 .132 .144 .145 .141 .1390 .013
3 139 .133 .147 .148 .149 .1432 .016 17 137 137 .142 .143 .141 .1400 .006
4 143 .141 .137 .138 .140 .1398 .006 18 137 .142 142 145 143 .1418 .008
5 142 142 145 .135 .136 .1400 .010 19 142 .142 .143 .140 .135 .1404 .008
6 136 .144 .143 .136 .137 .1392 .008 20 .136 .142 .140 .139 .137 .1388 .006
7 142 147 137 .142 138 .1412 .010 21 142 .144 140 .138 .143 .1414 .006
8 .143 .137 .145 .137 .138 .1400 .008 22 139 .146 .143 .140 .139 .1414 .007
9 141 .142 .147 .140 .140 .1420 .007 23 .140 .145 .142 .139 .137 .1406 .008
10 .142 137 .134 .140 .132 .1370 .010 24 134 .147 143 .141 142 .1414 .013

11 137 147 142 137 135 1396 .012 25 .138 .145 .141 .137 .141 .1404 .008
12 137 .146 .142 .142 146 .1426 .009 26 .140 .145 .143 .144 .138 .1420 .007
13 142 142 139 .141 .142 1412 .003 27 .145 .145 .137 .138 .140 .1410 .008
14 137 145 .144 137 .140 .1406 .008
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Figure 1: Average and Range Chart when Rheostat Knob Data are Recorded to 0.001 inch

The data in Figure 2 are the same data as those in Figure 1, except that in Figure 2 each value
has been rounded off to the nearest one-hundredth of an inch (0.01 in.). (This was done merely to
illustrate the effect of having a measurement increment that is too large. It is not something that
you would do in practice.) After rounding these data, the averages and ranges were recomputed
and a new average and range chart was obtained. There we find four averages and two ranges
outside the limits in Figure 2. The usual interpretation of the chart in Figure 2 would be that
these data show a lack of homogeneity, and that the underlying process is changing in some
manner.

However, we know that the charts in Figure 1 and those in Figure 2 both represent the same
process. The only difference between the two charts is the measurement increment used. Based
on Figure 1, we have to conclude that the “signals” in Figure 2 are actually false alarms created by
the round-off operation.
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Rounded Values for Rheostat Knob Data

Measurements X R Measurements X R

1 14 14 14 13 14 138 .01 5 14 14 14 14 14 140 .00
2 14 14 14 14 15 142 01 16 .13 .13 .14 .14 .14 136 .01
3 14 13 15 15 15 144 .02 17 14 14 14 .14 14 140 .00
4 14 14 14 14 14 140 .00 18 14 14 14 14 14 140 .00
5 14 14 14 14 14 140 .00 19 14 14 14 14 14 140 .00

14 14 14 14 14 140 .00 20 14 14 14 14 14 140 .00
14 15 14 14 14 142 01 21 14 14 14 14 14 140 .00
14 14 14 14 14 140 .00 22 14 15 14 14 14 142 01
14 14 15 14 14 142 01 23 14 14 14 14 14 140 .00
00 14 14 13 14 13 136 .01 24 13 15 14 14 14 140 .02

11 14 15 14 14 14 142 01 25 14 14 14 14 14 140 .00
12 14 15 14 14 15 144 .01 26 14 14 14 14 14 140 .00
13 14 14 14 14 14 140 .00 27 14 14 14 14 14 140 .00
14 14 14 14 14 14 140 .00
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Figure 2: Average and Range Chart when Rheostat Knob Data are Rounded to 0.01 inch

Comparing Figures 1 and 2 it should be apparent that chunky data can make a predictable process
appear to be unpredictable.

Fortunately, it is easy to tell when the data have become chunky. The key is in
understanding the differences between Figure 1 and Figure 2. When we look at the running
records for the averages we see that they both vary within the same range from a low near 0.136
to a high near 0.144. When we look at the running records for the ranges we see that they also
occupy roughly the same space on the vertical scale, going from 0.000 to 0.020. However, due to
the difference in measurement increments, the running records in Figure 2 take on fewer values
that the running records in Figure 1, and the highs and lows in Figure 2 are more extreme.

While the running records are trying to tell us the same story in both Figure 1 and Figure 2,
the sparsity of the possible values in Figure 2 makes the running records look more “chunky”
than those in Figure 1. At the same time, the many zero ranges in Figure 2 deflate the average
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range, which in turn deflates the limits.

So while the highs and lows get emphasized by the larger measurement increments, the
limits get squeezed. When this happens it is inevitable that the running record and limits will
collide and produce an excess number of false alarms.

So how can we spot this problem? The very look of the running records is one clue. The
abundance of zero ranges is another. However, the clear-cut, unequivocal indicator of chunky
data is the number of possible values for the ranges within the limits on the range chart.

Since the ranges will always have the same increments as the original data the ranges in
Figure 1 are all multiples of one-thousandth of an inch. The range chart from Figure 1 is
reproduced in Figure 3 with tick marks added to the vertical scale to represent the possible values
for the ranges. Inspection of Figure 3 will show that there are 19 possible values below the upper
range limit. (Your software will not supply these tick marks. You will have to do this mental
computation yourself.)
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Figure 3: Range Chart from Figure 1

The range chart from Figure 2 is given in Figure 4. There the ranges are all multiples of one-
hundredth of an inch, resulting in only two possible values below the upper range limit.
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Figure 4: Range Chart from Figure 2

CHUNKY DATA DETECTION RULES

Your data can be said to be chunky whenever there are four or fewer possible values within
the limits of the range chart. To be safe from the effects of chunky data, you need a minimum
of five or more possible values within the limits of the range chart.

The only exception occurs when the range chart is based on subgroup size n = 2. In this
case, your data can be said to be chunky whenever there are three or fewer possible values
within the limits of the range chart. Here the borderline safe condition occurs when you have
at least four possible values within the limits.
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Figure 1, with 19 possible values, shows no problem due to chunky data. Figure 2, with only
two possible values, shows data that are definitely chunky—the measurement increment is too
large for the purposes of creating a useful and meaningful process behavior chart. Since chunky
data create false alarms, you cannot safely interpret the “signals” of Figure 2 as evidence of
exceptional process variation. Thus, while chunky data might be used for inspection, they cannot
be used to characterize process behavior.

The problem seen in Figure 2 is due to the inability of the measurement increments to
properly detect and reflect the process variation. When these measurements are rounded to the
nearest 0.01 inch, most of the information about variation is lost in the round-off. As a result the
rounded data have many zero ranges even though the original data had no zero ranges. These
zero ranges deflate the average range and tighten the computed limits. At the same time, the
greater discreteness for both the averages and the ranges will prevent the running records from
shrinking with the limits. Eventually it becomes inevitable that some points will fall outside the
artificially tightened limits even though the process itself is predictable.

Therefore, the procedure to use to check for chunky data consists of three steps:

1. Determine the measurement increment used.
This is done by inspecting either the ranges or the original data.

2. Determine the upper and lower limits for the range chart.
This is done in the usual manner.

3. Determine how many possible values for the range fall within
the range limits, and apply the rules given above.

FIXING CHUNKY DATA

Since the problem with Chunky Data comes from the inability to detect variation within the
subgroups, the solution consists of increasing the ability of the measurements to detect that
variation.

One way to do this is to use smaller measurement increments. If you have been rounding
your measurements too aggressively you can solve the problem of chunky data by simply
recording an additional digit for each measurement. Even if there is some uncertainty in that
extra digit, its inclusion can actually improve the quality of your data. So, regardless of tradition,
if your data are chunky because you have been rounding your measurements, you need to stop
rounding and start recording an extra digit. If the current measurement system will not provide
you with an additional digit for your observations, then you may need to consider changing the
measurement system.

Another solution to the problem of chunky data is to increase the variation within the
subgroups. This will increase the ability of your current measurement system to detect variation
within the subgroups. With an average chart this will usually involve a change in what a
subgroup represents, rather than merely increasing the subgroup size. When a single subgroup
represents several successive parts coming off a line, you can usually increase the variation
sufficiently by simply expanding the subgroup to represent a longer period of time. When the
within-subgroup variation becomes detectable the visible effects of chunky data on the average
and range chart will disappear.

With an XmR chart this approach of increasing the variation is often equivalent to increasing
the time period between observations. When this is not feasible, the only alternative is to use
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smaller measurement increments. An example of the relationship between sample frequency and
chunky data is provided by the following.

An automated system could be set to sample the on-line temperature readings at different
frequencies. An engineer wanted to have the system produce XmR charts. In order to determine
the appropriate sampling frequency he experimented with several different frequencies.

First the temperatures were sampled 28 times per hour (once every 128 seconds) and the
values were placed on an XmR Chart. The limits for this chart are shown as the first set of yellow
bands on the left side of Figure 5. (In order to simplify the picture only the limits will be shown
in Figure 5.) Since the temperatures were recorded to the nearest degree Celsius the horizontal
lines in Figure 5 define the possible values for both the X values and the mR values. With 28
readings per hour the X-Chart defined values of 16° to 22° as routine and the moving range chart
had five possible values for the ranges within the limits, hence no problem with chunky data.

On-Line Temperatures
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Figure 5: Limits for XmR Charts for On-Line Temps at Seven Frequencies

Next the temperatures were sampled 56 times per hour (once every 64 seconds). This X chart
also defined values of 16° to 22° as routine and the mR chart had five possible values for the
ranges within the limits. Still no problem with chunky data.

Next the temperatures were sampled 112 times per hour (once every 32 seconds). This X
chart also defined values of 16° to 22° as routine and the mR chart had five possible values for the
ranges within the limits—still no problem. As long as the variation from one point to another is
large enough to allow the moving ranges to reliably characterize the routine process variation the
charts will continue to deliver the same message.

Next the temperatures were sampled 225 times per hour (once every 16 seconds). This X
chart has limits that round off to 16° and 22° while the mR chart has only four possible values for
the ranges within the limits—a borderline condition. While the limits for the X chart are slightly
tighter here than in the previous charts, the message of the XmR chart remains essentially the
same as with the previous charts with lower sample frequencies.

With the sample frequency at 450 times per hour (once every 8 seconds) the XmR chart shows
only three possible values within the limits on the range chart. This is indicative of chunky data,
and we can see how the limits begin to shrink.
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At 900 samples per hour the problem just gets worse—the limits are tightened even more.

At 1800 samples per hour the limits threaten to disappear.

So while the temperatures may be sampled very rapidly, meaningful limits cannot be
constructed from these data when the sample frequency exceeds 225 times per hour.

When the borderline condition is passed, the limits begin to shrink in response to the
increased number of zero ranges, and the limits will always be artificially tight. Whenever the
chart displays chunky data the tightened limits will result in an increased number of false alarms
which will undermine any attempt to interpret points outside the limits.

Increasing the subgroup size may reduce the number of false alarms on the average chart, but
it will not reliably remedy the basic problem of chunky data which comes from the round-off
deflating the estimate of dispersion.

If your observations consist of counts, and those counts display the effects of chunky data
when placed on an XmR chart, then your data are irredeemably chunky (and you are probably
counting rare events). Such data may be used to create running records, but they will not
support the computation of meaningful limits.

THE BASIS FOR THE DETECTION RULES

The problem of chunky data is the problem of estimating the variation within the data when
the measurement increment gets too large. To understand this problem and to show the basis for
the rules for detecting chunky data we will return to the data of Figures 1 and 2.

When an average range statistic is divided by the appropriate bias correction factor, d,, we
will obtain an unbiased estimate of the within-subgroup dispersion:

Average Range

Est. SD(X) = i,

To illustrate how this works consider using the first nine subgroups of Figure 1 to obtain an
average range of 0.009111. Then, using the next nine subgroups we obtain a second average
range of 0.008667. Finally, using the last nine subgroups we find a third average range of
0.007889. For subgroups of size five the bias correction factor is 2.326. Thus, our three average
ranges can be used to obtain three estimates of SD(X). These are, respectively, 0.00392, 0.00373,
and 0.00339. These three values are shown along with their theoretical distribution in Figure 6.
In drawing Figure 6 I used a value for SD(X) of 0.00368. Therefore, in this case the measurement
increment of 0.001 can be said to be 0.272 SD(X).
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Figure 6: The Distribution of Unbiased Range-Based Estimates of SD(X) from Figure 1

If we continued to collect data from the predictable process of Figure 1 and used these data to
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compute estimates of SD(X) (using average ranges based on nine subgroups of size five), then we
would eventually end up with a histogram that approximates the distribution shown in Figure 6.
This theoretical distribution has a mean value that is equal to SD(X).

MEAN [ Est. SD(X)] = SD(X)

On the other hand, in Figure 2 the measurement increment is 0.01, which is 2.72 SD(X), and
the estimates of SD(X) are no longer centered on SD(X). To illustrate this we divide the data of
Figure 2 into three sets consisting of nine subgroups of size five and obtain average ranges of
0.00667, 0.00444, and 0.00333 respectively. These values yield estimates of SD(X) of 0.00287,
0.00191, and 0.00143. These three values are shown along with their theoretical distribution in
Figure 7. Here the mean value of the distribution is no longer equal to the value of SD(X).
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Figure 7: The Distribution of Biased Range-Based Estimates of SD(X) from Figure 2

In Figure 6 the ratio of MEANIJ[Est. SD(X)] to SD(X) is 1.000. In Figure 7 this ratio is much less
than 1.000. Figure 8 uses the ratio of MEANI[Est. SD(X)] to SD(X) to show how large
measurement increments introduce bias into the estimates of dispersion. The blue triangle on the
left represents the situation in Figure 6, while the blue triangle on the right represents the
situation in Figure 7. The bottom curve is for the average of two-point moving ranges. The
remaining curves, in ascending order according to the right-hand end points, are for average
ranges based on subgroups of size 2, 3, 4, 5, 6, 8, and 10.



What is Chunky Data? Donald J. Wheeler

MEAN [Est. SD(X) ]
SD(X)
A .—/\:F\\
L0 4 sretesrrrrid : - Theoretical
<
S Estimates Based on the Average Range
hS \
N
§ 0.8
N
S ,
a 0.6 Measurement | Measurement As these curves
e ' Increments | Increments deviate from the
% | Smaller than = Larger than theoretical value of 1.0
3 SD(X)  SD(X) the estimators become
N ) increasingly biased. \
= 04
N
= ]
S
8
S 02 - |
0.1 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Sige of Measurement Increment (as a Multiple of SD(X))
Figure 8: How the Measurement Increment Affects Range Based Estimates of SD(X)

On the left-hand side of Figure 8 all of the curves are near 1.00. This is what theory predicts
should happen. Here the measurement increments do not interfere with the computations and
the theoretical relationships still work in practice. However, as the measurement increment gets
larger than SD(X) these curves begin to move around, with substantial departures occurring
when the measurement increment exceeds 1.5 SD(X). These departures from the theoretical
mean that the unbiased estimators of dispersion will become biased. As a result, the formulas
and computations based upon the theoretical relationships will be undermined.

Thus, when the measurement increment is less than or equal to SD(X) the theoretical
relationships will hold and the usual formulas built on those relationships will work as
advertised. However, as the measurement increment gets larger than SD(X), there will come a
point where the usual formulas will no longer work.

If we define the borderline safe condition to be that point at which the measurement
increment is equal to the value of SD(X), then the limits for the range chart will have the
following form:

Upper Range Limit

Dy MEAN(R) = D4 dy SD(X) = Dy dp Measurement Increments
Lower Range Limit = D3 MEAN(R) = D3 dy SD(X) = D3 dy Measurement Increments

These values are tabled for subgroup sizes of n =2 ton = 10 in Figure 9. Consideration of these
limits reveals the number of possible values within the limits on a range chart at this borderline
safe condition.
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Limits for Range Chart When SD(X) = Measurement Increment

Lower Upper Possible Values Number of Possible
Subgroup Range Range for Range Values for Range
Size Limit Limit Within Limits Within Limits
2 none 3.69 0,1,2,3 4
3 none 4.36 0,1,2,3,4 5
4 none 4.70 0,1,2,3,4 5
5 none 4.92 0,1,2,3,4 5
6 none 5.08 0,1,2,3,4,5 6
7 0.21 5.20 1,2,3,4,5 5
8 0.39 5.31 1,2,3,4,5 5
9 0.55 5.39 1,2,3,4,5 5
10 0.69 5.47 1,2,3,4,5 5

Figure 9: Table for the Number of Possible Values Within the Limits on a Range Chart

Since the values in Figure 9 define the borderline safe condition, the following guidelines for
detecting chunky data are established.

The measurement increment borders on being too large when there are only five possible
values within the limits on the range chart. Four values within the limits will be indicative of
chunky data, and fewer than four values will severely distort the limits.

The only notable exception to this occurs when the subgroup size for the range chart is n =
2; here four possible values within the limits on the range chart will represent the borderline
safe condition. Three possible values within the limits will be indicative of chunky data, and
fewer than three values will result in appreciable distortion of the limits.

While these detection rules will work with range charts and moving range charts, they will
not work with other charts for dispersion. This is because the range is the only measure of
dispersion that preserves the discreteness of the original measurements.

Thus, there need be no confusion about whether or not the measurement increment being
used is sufficiently small for the application at hand. The range chart clearly shows when it is
not. Fortunately, when this problem exists, the solutions are straightforward: either smaller
measurement increments must be used, or the variation within the subgroups must be increased.
You must implement one of these solutions before your process behavior charts will be of any
real use. If neither of these solutions can be applied, then the data may still be plotted in a
running record, and used in a descriptive sense, but they should not be used to compute limits
for a process behavior chart.

WILL THE STANDARD DEVIATION STATISTIC FIX CHUNKY DATA?

Can we remedy the problem of chunky data by using the standard deviation statistic in place
of the range? In addressing this question we need to begin with the observation that for
subgroups of size n = 2 the standard deviation statistic is simply the range divided by the square
root of 2. Since division by a constant will not change the mathematical properties of a random
variable, we will not gain anything by shifting to the standard deviation statistic when n = 2.

For n = 3 or more, when the range chart shows signs of chunkiness, you can make these signs
disappear by simply switching to the standard deviation chart. But while the symptoms may
vanish, the problem still persists. This may be seen in Figure 10 where we see how the
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measurement increment affects the ability of the average standard deviation statistic to provide a
reliable estimate of SD(X).
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Figure 10: How the Measurement Increment Affects the Average Standard Deviation Statistic

As before, with small measurement increments the curves are equal to the theoretical value of
1.00. But as the measurement increment increases in size the curves begin to deviate from 1.00.
The bottom curve is for n = 3. The rest of the curves, in ascending order according to their right
hand end-points are for n = 4, 5, 6, 8, and 10. Unlike the range-based estimates of SD(X), the
standard deviation-based estimates begin to be inflated when the measurement increment gets
larger than 0.5 SD(X). However, like the range-based estimates, these estimates all begin to
plummet when the measurement increment exceeds twice the value of SD(X). Therefore, the fact
that the standard deviation chart does not show the effects of chunky data does not mean that
those effects have been eliminated. It simply means that the complex structure of the standard
deviation statistic has hidden the chunkiness.

Figures 8 and 10 show that the effects of chunky data are eventually the same regardless of
whether we are using range-based estimates or standard deviation-based estimates. Once the
measurement increment exceeds 2.0 SD(X) all estimates will plummet toward zero.

Thus the problem of chunky data is a problem that you will need to recognize in order to
avoid having an excess number of false alarms. In this regard the range chart makes it possible to
spot and test for chunky data while the standard deviation chart does not. Moreover, the average
range does a better job of providing an unbiased estimator on the edges of chunky data than does
the average standard deviation statistic. So not only are there no advantages to using the
standard deviation statistic, but there are some practical disadvantages as well.

SUMMARY

Chunky data is one problem with the measurement system that can be detected on an
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ordinary process behavior chart. It is easy to spot, and it is important to know about because it
represents the one failure mode for a process behavior chart where the chart does not fail safely.
Chunky data will eventually create a excess number of false alarms, which will undermine the
credibility of process behavior chart.

Chunky data will undermine our ability to use the data to compute appropriate limits for a
process behavior chart. Chunky data may still be plotted on a running record, and they may still
be used for inspection, but they are inadequate for use on a process behavior chart.

Theoretical relationships always assume that the measurements are continuous, and all
formulas for computations are based on these theoretical relationships. In practice our
measurements are never continuous. When the measurement increment gets large enough it will
contaminate the computations and result in formulas that do not work as advertised.
Fortunately, if you begin your data analysis as you should, and use a process behavior chart as
the first step in that analysis, you can check for this problem before it gives you flawed results.
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