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A Better Way to Do R&R Studies

The Evaluating the Measurement Process Approach

Donald J. Wheeler

Last month’s column looked at how to fix some of the Problems with Gauge R&R Studies.
This month I will show you how to learn more from your gauge R&R data with less effort.
Rather than getting lost in a series of computations, the Evaluating the Measurement Process
(EMP) approach uses the power of the graph to reveal the interesting aspects of your data so that
you can know how to ask the important questions.

AN  EMP  STUDY

The idea behind an EMP study is both simple and profound.  As expressed by my friend and
colleague, the late Richard Lyday, “Measurement is a process, and with rational subgrouping you
can study any process.”  An EMP study begins very much like a gauge R&R study, but rather
than computing estimates of everything possible, it immediately places the data on an average
and range chart in order to discover what is happening in the data.

When we use an average and range chart with experimental data we are doing something
completely different from what we usually do with this chart.  When an average and range chart
is used with data from a continuing process it is properly called a process behavior chart.  There
the objective is to classify the process as either being predictable or unpredictable.  In contrast to
this, in an EMP study we are looking at the results of a special type of experiment.  Here we
trying to determine if we can detect part-to-part differences in spite of the uncertainty introduced
by measurement error.  This shift in both the nature of the data and the nature of our questions
will change the way we interpret the average and range chart of an EMP study.

While the EMP approach can be adapted to many different data structures and data
collection schemes, we will illustrate the basic EMP study using the same data collection strategy
used in a gauge R&R study.  A simple fully crossed experiment is performed where two or more
operators measure each of three to ten parts two or three times apiece.  For our example we shall
use an EMP study where six operators measured each of four parts three times apiece.

The measurement system consists of a manual test stand that measures an electromagnetic
property of particular product.  Since this manual test stand is used in production for 100 percent
inspection, it is crucial to the operation of the plant.  Since six operators routinely perform this
test, all six were included in the EMP study.  The four parts used in the study were selected from
the product stream on each of four different days.

With simple and objective measurement systems the EMP study may be performed in a fairly
straightforward manner.  Richard Lyday would usually collect his data in two or three rounds
where each operator would measure each part once in each round.  However, with subjective or
complex measurements it may be necessary to “blind” the experiment where the operators do not
know when they are retesting a given item, and where the order of testing is shuffled or
“randomized” in some manner.
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Figure 1:  EMP Study for the Manual Test Stand

The key to understanding any average and range chart is to understand what sources of
variation are found within the subgroups and what sources of variation are found between the
subgroups.  In Figure 1 there are three distinct sources of variation:  The operator-to-operator and
part-to-part differences which show up between the subgroups and the measurement-to-
measurement differences which show up within the subgroups.

The test-retest variation found within the subgroups is commonly known as the repeatability.
This isolation of the test-retest error within the subgroups, with all of the other sources of
variation showing up between the subgroups, is the distinguishing characteristic of an EMP
study.  Because of this isolation of test-retest error, the limits shown on the average and range
chart in Figure 1 depend solely on the test-retest error.  Therefore, the limits in Figure 1
specifically show that amount of variation which can be attributed to measurement error alone.

As always, the average chart looks for differences between the subgroups while the range
chart checks for consistency within the subgroups.  This characteristic of the charts means that the
range chart in Figure 1 checks these 24 subgroups to see if there is any inconsistency in the
amount of test-retest error shown.  The range values that fall above the upper range limit are
signals of inconsistency in the test-retest error.  Since such inconsistencies represent serious
problems with the measurement procedure itself, the causes of these points deserve investigation.

Because the limits for an average and range chart are robust, we can, in spite of the
inconsistency on the range chart, also use the average chart to evaluate the part-to-part and
operator-to-operator differences.  We begin by discussing the part to part variation.

The differences between the parts will depend upon how the parts were selected.  Sometimes
the parts may be selected at specific intervals from the product stream.  At other times the parts
may be a simple grab sample, or some other type of haphazard sample, selected from the product
stream.  And in some cases the parts may be deliberately selected to represent a range of product
values.  Regardless of how the parts are selected, you will want to detect the part-to-part
differences in spite of the uncertainties introduced by measurement error.  This means that you
will want to find points outside the limits on the average chart.  As long as you did not select the
parts in such a way that they all end up being alike (such as might happen if you use only
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rejected parts in the study) you will expect to find points outside the limits.  The average chart
allows us to make a visual comparison between the part-to-part variation and measurement
error.  The part-to-part variation is represented by the width of the band swept out by the
running record.  The measurement error is represented by the width of the average chart limits.
Thus, the wider the band swept out by the running record is relative to the width of the limits,
the easier it will be to detect product variation in spite of measurement error.

Width of  Band Defined 
by Running Record Width of Limits Defined by 

Measurement 
Error

Figure 2:  Relative Utility of Measurement System Shown on Average Chart

At the same time that we want to detect the part to part differences, we prefer for there to be
no differences between the operators.  There are two ways to check for operator differences using
the average chart.  The first of these uses the shapes of the running records and the second uses
the positions of the running records.  In order to facilitate both of these comparisons an EMP study
will omit the line segments that would connect dots from one operator to the next.

To see how to interpret the shape of the running record it is helpful to begin by considering
what the average chart would look like if there were no differences between operators and also
no measurement error.  Under these conditions the running records for each operator would be
exactly the same.  Segment by segment they would be perfectly parallel to each other (rather like
the curves for Operators A and B).  However, as soon as we introduce measurement error into the
picture we will begin to see slight departures from perfect parallelism (rather like the curves for
Operators D and F).  As long as there is a reasonable degree of parallelism we need not be
concerned.  Here Operators A, B, C, D, and F all show a reasonable degree of parallelism.
Operator E, on the other hand, displays a serious lack of parallelism.
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Figure 3:  Lack of Parallelism for Operator E

So what does a lack of parallelism represent?  Serious nonparallelism is indicative of an
interaction effect between the operators and the parts.  (Algebraically, interaction effects and
nonparallelism are one and the same thing:  You cannot have an interaction effect without a lack
of parallelism, and vice versa.)  Here we see that Operator E is measuring these four parts in a
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substantially different manner.  Since there should be no interaction effects between the operators
and the parts, this interaction represents a serious inconsistency in the measurement process that
needs immediate attention.  Such interaction effects might be due to operators using different
techniques, or to some operators skipping a step in the measurement procedure, or simply due to
the presence of one or more untrained operators.  But whatever the cause, it is a problem with the
measurement process that needs to be fixed.

In addition to checking for parallelism, we can also compare the positions of the running
records.  When we do this we are essentially comparing the operator averages.  In Figure 4 we see
that both Operator C and Operator E have averages that are substantially lower than those of the
other four operators.  Such differences between operator averages are potential operator biases.
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Figure 4:  Potential Operator Biases for Operators C and E

So, what can we say is the overall message of the EMP chart in Figure 4?  Operators A, B, and
F show good parallelism, have similar averages for these four parts, and show consistently small
amounts of test-retest error.  Comparing the width of the limits with these three running records
we can see that the manual test stand can detect product variation.

Operator C shows good parallelism, and a small amount of test-retest error, but he is
consistently low on all of his measurements.  This is a potential operator bias.  The reason for this
bias needs to identified so that the bias can be eliminated.

Operator D has reasonable parallelism and a good average, but she has a range point above
the upper limit of the range chart.  Obviously one of her readings for Part 1 is problematic.  While
the other ranges and the reasonable parallelism show that she usually does a good job, the reason
for this aberrant reading needs to be identified.

Operator E has large ranges, poor parallelism, and the wrong average for these four parts.
Whatever else you might say about him, he clearly does not know how to use the manual test
stand.  While Operators C and D may need a refresher on using the test stand, Operator E needs
to be moved to another job until he can be trained in how to use this device and can display a
skill level comparable to that displayed by the other operators.

Of course, the first step is getting the operators to measure things alike is to convince them
that they are not currently doing so.  It is likely that Operators C, D, and E all think that they are
measuring these parts in the same way as Operators A, B, and F.   Creating Figure 1 is the first
step in convincing them that they are not.
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SO  WHAT  HAVE  WE  LEARNED?

An EMP study begins by placing the data from a gauge R&R study on an average and range
chart.  By doing this we can make several qualitative assessments even before we begin to make
any specific computations:

1. The range chart will allow us to determine if the test-retest error is consistent throughout
the study, and also to judge if it is consistent from operator to operator.  When test-retest
error is not consistent we will need to find out why.

2. The average chart will allow us to assess the relative utility of the measurement system
by showing whether the measurement process can detect product variation.

3. The average chart will allow us to spot nonparallelism between the operators.  Since any
appreciable nonparallelism will indicate an interaction effect between the operators and
the parts, it will warn of serious inconsistencies in the measurement process.

4. The average chart will allow us to assess the likelihood of detectable operator biases.  If
such biases exist they will need to be eliminated to get the most out of the measurement
process.

By the time you have constructed your EMP chart you will know what is going on in your
data.  You will know the interesting questions, and you will know if problems exist.  One of the
fundamentals of data analysis is to always begin with a graph of your data.  Computations exist
to complement graphs, but they can never replace them.  When you depend upon the computed
quantities alone, you are likely to miss many of the interesting aspects of your data.

The objective of analysis is insight, and the best analysis is the simplest analysis that provides
the needed insight.  Moreover, it does no good to discover something when you cannot
communicate your discovery to others.  EMP studies use the power of the graph to help with
both the discovery and the communication.

BUT  HOW  CAN  WE  BE  SURE  ABOUT  THE  DIFFERENCES?

While the graph in Figure 4 is fairly clear, not all EMP studies are so clear cut.  If we think we
see an operator bias, or if we think the operators have different amounts of test-retest error, how
can we be sure that we are not merely interpreting noise?  To answer these questions we will
need to rearrange the data for further analysis.  The following charts will provide a powerful way
to answer all of the questions of interest arising out of the EMP study.

MAIN  EFFECT  CHARTS

To compare the operator averages we use an Analysis of Main Effects (ANOME).  This is a
generalization of an average chart that is appropriate for experimental studies (which will have a
fixed amount of data).  The limits will be computed using the grand average and the average
range from Figure 1.  In an ANOME the original k subgroups of size n are rearranged into m
subgroups, and the idea is to see if any of these m subgroup averages are detectably different
from the grand average.  The limits for the Main Effect Chart will be:

Grand Average  ±  ANOME.05 (Average Range)

where ANOME.05 is the 5% critical value for an Analysis of Main Effects.  This critical value will
depend upon n, k, and m, and may be found in Table 1.
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Table 1: Scaling Factors for Main Effect Charts

ANOME.05 n = 2 n = 3 n = 4 n = 5

k = 4 m = 2 0.833 0.384 0.261 0.202

k = 6 m = 2 0.610 0.299 0.206 0.162
m = 3 1.084 0.519 0.356 0.276

k = 8 m = 2 0.501 0.253 0.176 0.139
m = 4 1.157 0.568 0.392 0.305

k = 9 m = 3 0.814 0.408 0.283 0.221

k = 10 m = 2 0.435 0.224 0.156 0.123
m = 5 1.202 0.599 0.414 0.324

k = 12 m = 2 0.389 0.203 0.142 0.111
m = 3 0.678 0.346 0.242 0.190
m = 4 0.884 0.448 0.313 0.245
m = 6 1.233 0.622 0.432 0.338

k = 14 m = 2 0.357 0.186 0.129 0.091
m = 7 1.258 0.639 0.444 0.345

k = 15 m = 3 0.592 0.306 0.215 0.160
m = 5 0.928 0.477 0.333 0.254

k = 16 m = 2 0.331 0.172 0.114 0.083
m = 4 0.741 0.383 0.264 0.205
m = 8 1.272 0.650 0.452 0.354

k = 18 m = 2 0.309 0.163 0.101 0.071
m = 3 0.531 0.278 0.186 0.140
m = 6 0.959 0.495 0.341 0.263
m = 9 1.288 0.663 0.459 0.358

k = 20 m = 2 0.292 0.140 0.094 0.066
m = 4 0.650 0.332 0.232 0.174
m = 5 0.782 0.401 0.280 0.214

m = 10 1.304 0.667 0.466 0.365

k = 21 m = 3 0.485 0.245 0.167 0.125
m = 7 0.980 0.504 0.349 0.272

k = 24 m = 2 0.264 0.123 0.076 0.055
m = 3 0.451 0.226 0.151 0.115
m = 4 0.585 0.300 0.202 0.155

m = 6 0.811 0.415 0.287 0.223
m = 8 1.000 0.516 0.357 0.278

m = 12 1.327 0.680 0.475 0.374

For the data from Figure 1, the six operator averages are 32.17, 31.83, 29.08, 31.83, 28.50, and
31.50.  The grand average is 30.78 and the average range is 1.375.  With n = 3, k = 24, and m = 6,
our scaling factor from Table 1 is ANOME.05  =  0.415, resulting in limits of:

Grand Average  ±  ANOME.05 (Average Range)   =   30.778  ±  0.415 (1.375)   =   30.21  to  31.35

The Main Effect Chart in Figure 5 shows Operators A, B, and D to have averages that are
detectably greater than the grand average, while Operators C and E have averages that are
detectably lower than the grand average.  Since the grand average is a somewhat arbitrary point
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of comparison, we can look at the width of the limits and conclude that Operators A, B, D, and F
have reasonably similar averages, while Operators C and E have averages that are substantially
different from the other operators.
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Figure 5:  Main Effect Chart for Manual Test Stand Data

Hence, Figure 5 shows that the apparent Operator Bias seen in Figure 4 is real.  When you are
presenting the results of an EMP study, the use of a Main Effect Chart will make any operator
biases easier to see.  Moreover, it will make it much harder to dismiss real operator biases as a
fluke.

MEAN  RANGE  CHARTS

To see if the operators display different levels of test-retest error we can use an Analysis of
Mean Ranges (ANOMR).  Beginning with the original k  subgroups of size n, we use the k
subgroup ranges to compute an average range for each operator.  These m average ranges will be
compared in a Mean Range Chart.  As before, the limits for an Analysis of Mean Ranges will be
based on the original average range for the k subgroups of size n.  Since these limits can be
nonsymmetric, we will need two scaling factors.  The limits for a Mean Range Chart will be:

Upper ANOMR Limit   =   UMR.05 (Original Average Range)
Lower ANOMR Limit   =   LMR.05 (Original Average Range)

where UMR.05 and LMR.05 are the 5% critical values for an Analysis of Mean Ranges.  These
critical values will depend upon n, k, and m = number of mean ranges to be compared, and may
be found in Table 2.
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Table 2:  Scaling Factors for Mean Range Charts

ANOMR.05 n = 2 n = 3 n = 4 n = 5
LMR UMR LMR UMR LMR UMR LMR UMR

k = 4 m = 2 0.271 1.729 0.481 1.519 0.578 1.422 0.633 1.367

k = 6 m = 2 0.395 1.605 0.575 1.425 0.656 1.344 0.701 1.299
m = 3 0.136 2.133 0.333 1.775 0.445 1.620 0.512 1.539

k = 8 m = 2 0.475 1.525 0.635 1.365 0.703 1.297 0.741 1.259
m = 4 0.109 2.317 0.292 1.881 0.405 1.703 0.474 1.606

k = 9 m = 3 0.246 1.915 0.442 1.625 0.539 1.502 0.596 1.436

k = 10 m = 2 0.530 1.470 0.672 1.328 0.733 1.267 0.770 1.230
m = 5 0.092 2.432 0.268 1.952 0.381 1.759 0.451 1.655

k = 12 m = 2 0.569 1.431 0.703 1.297 0.758 1.242 0.789 1.211
m = 3 0.329 1.784 0.511 1.534 0.596 1.434 0.647 1.374
m = 4 0.210 2.052 0.404 1.705 0.504 1.567 0.563 1.490
m = 6 0.082 2.520 0.253 1.998 0.363 1.798 0.433 1.691

k = 14 m = 2 0.603 1.397 0.724 1.276 0.777 1.223 0.822 1.178
m = 7 0.074 2.591 0.239 2.043 0.350 1.829 0.424 1.712

k = 15 m = 3 0.388 1.701 0.559 1.476 0.637 1.387 0.696 1.320
m = 5 0.189 2.142 0.378 1.762 0.479 1.613 0.549 1.513

k = 16 m = 2 0.630 1.370 0.743 1.257 0.799 1.201 0.836 1.164
m = 4 0.288 1.898 0.476 1.605 0.570 1.481 0.626 1.410
m = 8 0.068 2.65 0.228 2.080 0.339 1.851 0.413 1.730

k = 18 m = 2 0.649 1.351 0.757 1.243 0.819 1.181 0.856 1.144
m = 3 0.436 1.637 0.599 1.436 0.680 1.339 0.728 1.283
m = 6 0.171 2.213 0.361 1.805 0.468 1.634 0.534 1.536
m = 9 0.063 2.70 0.220 2.107 0.331 1.874 0.406 1.744

k = 20 m = 2 0.668 1.332 0.781 1.219 0.832 1.168 0.866 1.134
m = 4 0.347 1.797 0.528 1.528 0.617 1.424 0.669 1.351
m = 5 0.265 1.976 0.452 1.644 0.550 1.510 0.608 1.432

m = 10 0.059 2.742 0.213 2.128 0.323 1.890 0.399 1.762

k = 21 m = 3 0.478 1.585 0.638 1.389 0.707 1.308 0.753 1.253
m = 7 0.159 2.261 0.348 1.833 0.456 1.659 0.522 1.553

k = 24 m = 2 0.696 1.304 0.803 1.197 0.857 1.143 0.886 1.114
m = 3 0.505 1.547 0.658 1.360 0.731 1.277 0.772 1.234
m = 4 0.398 1.723 0.573 1.478 0.656 1.373 0.701 1.318

m = 6 0.248 2.028 0.438 1.679 0.537 1.530 0.595 1.451
m = 8 0.150 2.309 0.338 1.857 0.447 1.674 0.512 1.570

m = 12 0.053 2.803 0.203 2.158 0.312 1.913 0.386 1.782

For the data from Figure 1, the m = 6 operator average ranges are 0.50, 0.25, 0.75, 1.75, 5.00,
and 0.00.  The original average range is 1.375.  With n = 3, k = 24, and m = 6, our scaling factors
from Table 2 are UMR.05  =  1.679, and LMR.05 = 0.438, resulting in limits of:

Upper ANOMR Limit   =   1.679 (1.375)   =   2.31
Lower ANOMR Limit   =   0.438 (1.375)   =   0.60
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Figure 6:  Mean Range Chart for Manual Test Stand Data

Figure 6 shows the Mean Range Chart.  With an overall risk of a false alarm of five percent,
we can say that Operators A, B, and F have average ranges that are detectably smaller than the
original average range, while Operator E has a an average range that is detectably greater than
the original average range.  Once again, based on the width of the limits, it is reasonable to say
that Operators A, B, C, and F show similar amounts of test-retest error, and that Operator E is in a
class of his own.  While we found both Operators D and E to have points outside the limits in
Figure 1, the Mean Range Chart will make the case even clearer.

PROBABLE  ERROR

Using the test-retest error shown by Operators A, B, C, and F we find a revised value of the
overall average range to be 0.375.  This gives us an estimate of repeatability of:

Repeatability  =  
R
–

d2    =  
0.375
1.693  =  0.22 units

Since this average range is based on 16 subgroups of size 3 it is said to have 29 degrees of
freedom.  This means that when this manual test stand is operated consistently the measurements
will have a probable error of:

Probable Error  =   0.675 (Repeatability)   =     0.15 units

An appropriate measurement increment will be no larger than twice the Probable Error, and no
smaller than one-fifth of the Probable Error.  Here we find that twice the Probable Error is 0.30
units.  Inspection of Figure 1 will show that they have been recording the values to the nearest
whole number.   This means that in rounding off their values they have been needlessly
discarding useful information.  (This also explains why eleven of the subgroups in Figure 1 had a
zero range.)  Instead of rounding everything off to the nearest whole number, they need to record
these values to the nearest tenth of a unit.

INTRACLASS  CORRELATION

While the Repeatability and the Probable Error describe the quality of the measurements in
an absolute sense, there remains the question of whether or not these measurements can be used
to detect product variation.  To answer this question we will need an estimate of the product
variation.  Due to the small number of parts used, EMP studies (and gauge R&R studies) are not
the best place to obtain such estimates.  In general, estimates of the product variation should be
obtained from a process behavior chart.  However, failing this, we can still obtain some rough
idea about the relative utility of the measurement system for a given application from the EMP
study.  Here we delete the values for Operator E and use the remaining values to find part
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averages of 32.33, 30.73, 34.2, and 27.67.  The range for these four part averages is 6.53.  The d2*
bias correction factor for one group of four values is 2.237.  Dividing and squaring we find:

Product Variance   =   
 6.532 
 2.2372    =   8.521

This estimate of the variance will only have 2.9 degrees of freedom.  Nevertheless, we can still
estimate the Intraclass Correlation to be:

Intraclass Correlation  =   
 Product Variance 

 Repeatability Squared + Product Variance    =   
8.521

 0.049 + 8.521   =   0.994

Given the relative sizes of the two numbers involved (0.049 and 8.5) our uncertainty in the
product variance is not going to have an appreciable impact upon the Intraclass Correlation
statistic.  So while this number may be soft due to the small number of degrees of freedom, we
can still see that this measurement system will provide a First Class Monitor for measuring this
product.

This example comes from my book EMP III: Evaluating the Measurement Process and Using
Imperfect Data where further examples and explanations may be found.  Tables 1 and 2 were
excerpted from my book Range-Based Analysis of Means.

SUMMARY

An EMP study uses the power of the graph to reveal the interesting aspects of our R&R
study.  Here we:

1. identified serious problems with one operator;
2. found two more operators that need some retraining; and
3. identified three operators that are getting the most out of the measurement device.
In addition, with a couple of basic computations, we discovered that we need to record one

more digit in these data, and established that this measurement system is a First Class Monitor
for use with this product.

While it has been said that “the average and arange chart technique will not allow you to
estimate the interaction effects,” this statement conveys a false impression.  When there is an
operator by part interaction present, estimation is moot.  The real question is “Who is different?”
The EMP approach shows any and all interaction effects that may be present and tells you who is
different.  Without the insight to the operator differences provided by the average and range
chart, and confirmed by the ANOME and ANOMR analyses, we might not have removed
Operator E’s values.  This would have skewed both our computations and our interpretation of
the data.

The use of an average and range chart to evaluate the measurement process has been around
for quite some time.  It was briefly described and illustrated in the Western Electric Statistical
Quality Control Handbook in 1956.  Primarily due to the efforts of Richard Lyday, it was also
included in the AIAG Measurement Systems Analysis handbook.  However, in both instances,
very little guidance was provided on how to interpret the charts and make sense of the analysis.
Since this use of the charts with experimental data is substantially different from the traditional
use of the charts with observational data, this lack of guidance resulted in a lack of use.

Hopefully, this article has shown how the EMP approach can be used to make the qualitative
assessments that are needed to make sense of many R&R studies, and how ANOME and
ANOMR can be used to confirm the nuisance components of measurement error as a first step in
getting rid of those nuisances.


